论文标题

在Weyl超导体中的边缘超电流对竞争的冷凝物窃取

Eavesdropping on competing condensates by the edge supercurrent in a Weyl superconductor

论文作者

Kim, Stephan, Lei, Shiming, Schoop, Leslie M., Cava, R. J., Ong, N. P.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In a topological insulator the metallic surface states are easily distinguished from the insulating bulk states (FuKane07). By contrast, in a topological superconductor (FuKane08,Qi,FuBerg,Oppen), much less is known about the relationship between an edge supercurrent and the bulk pair condensate. Can we force their pairing symmetries to be incompatible? In the superconducting state of the Weyl semimetal MoTe$_2$, an edge supercurrent is observed as oscillations in the current-voltage (\emph{I-V}) curves induced by fluxoid quantization (Wang). We have found that the $s$-wave pairing potential of supercurrent injected from niobium contacts is incompatible with the intrinsic pair condensate in MoTe$_2$. The incompatibility leads to strong stochasticity in the switching current $I_c$ as well as other anomalous properties such as an unusual antihysteretic behavior of the ``wrong'' sign. Under supercurrent injection, the fluxoid-induced edge oscillations survive to much higher magnetic fields \emph{H}. Interestingly, the oscillations are either very noisy or noise-free depending on the pair potential that ends up dictating the edge pairing. Using the phase noise as a sensitive probe that eavesdrops on the competiting bulk states, we uncover an underlying blockade mechanism whereby the intrinsic condensate can pre-emptively block proximitization by the Nb pair potential depending on the history.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源