论文标题
在p谐波的自我图上
On p-harmonic self-maps of spheres
论文作者
论文摘要
在此手稿中,我们在旋转$ p $ harmonic图中研究球之间。我们证明,对于给定的$ p \ in \ mathbb {n} $,存在$ \ mathbb {s}^m $的无限$ p $ -Harmonic自图,每个$ m \ in \ mathbb {n} $,$ p <m p <m p <m <m <2+p+p+p+p+p+2+2 \ sqrt {对于$ \ mathbb {s}^m $的身份图,我们明确确定了相应的雅各比操作员的频谱,并表明对于$ p> m $,$ \ mathbb {s}^m $的身份图在解释为$ p $ p $ - harm-harmomonic submap $ harm-harm-harm-harm-harm-math $ $ \ mathbb = s}时是稳定的。
In this manuscript we study rotationally $p$-harmonic maps between spheres. We prove that for $p\in\mathbb{N}$ given, there exist infinitely many $p$-harmonic self-maps of $\mathbb{S}^m$ for each $m\in\mathbb{N}$ with $p<m< 2+p+2\sqrt{p}$. In the case of the identity map of $\mathbb{S}^m$ we explicitly determine the spectrum of the corresponding Jacobi operator and show that for $p>m$, the identity map of $\mathbb{S}^m$ is stable when interpreted as a $p$-harmonic self-map of $\mathbb{S}^m$.