论文标题
使用高阶边缘元素定制的3D电磁建模的网格划分
Tailored meshing for parallel 3D electromagnetic modeling using high-order edge elements
论文作者
论文摘要
我们介绍了基于高阶边缘元素和监督$ H+P $细化方法的地球物理电磁(EM)建模的数值实验。我们的高级$ H+P $改进策略是基于并扩展了PETGEM代码的。我们从准确性,收敛速率和计算努力方面关注绩效研究,以基于合成和实验数据来解决现实生活中的3D设置,以进行能量储量表征。这些测试用例显示可变分辨率离散的需求和现实的物理参数。通常,我们的数值结果在理论上是一致的。使用$ h-$改编的网眼可以有效地达到合成EM响应中的一定精度水平。关于全球$ p-$改进,$ p = 2 $表现出最佳的准确性/性能权衡。选择性$ p $ - 翻新可能会在准确性和计算成本之间提供更好的折衷。但是,对于不同实体的$ p- $改进,最佳的完善方案包括在体积水平上使用$ p = 3 $,$ p = 1 $在面部和边缘。因此,如果层次应用$ p- $完善,则可以具有竞争力。尽管如此,我们承认,我们监督的$ H+P $改进策略的性能取决于输入模型(例如电导率,频率,域分解策略等)。无论选择的配置如何,我们的数值结果都会在应用$ H+P $改进方案时对EM建模的利弊有深入的了解。
We present numerical experiments for geophysics electromagnetic (EM) modeling based upon high-order edge elements and supervised $h+p$ refinement approaches on massively parallel computers. Our high-order $h+p$ refinement strategy is based on and extends the PETGEM code. We focus on the performance study in terms of accuracy, convergence rate, and computational effort to solve real-life 3D setups based on synthetic and experimental data for energy reservoir characterization. These test cases show variable resolution discretization needs and realistic physical parameters. In general, our numerical results are consistent theoretically. The use of $h-$adapted meshes was efficient to achieve a certain accuracy level in the synthetic EM responses. Regarding global $p-$refinement, $p=2$ exhibits the best accuracy/performance trade-off. Selective $p$-refinement might offer a better compromise between accuracy and computational cost. However, for $p-$refinement at different entities, the best refinement scheme consists of using $p=3$ at the volume level with $p=1$ at faces and edges. Thus, $p-$refinement can be competitive if applied hierarchically. Nevertheless, we acknowledge that the performance of our supervised $h+p$ refinement strategy depends on the input model (e.g., conductivity, frequency, domain decomposition strategy, among others). Whatever the chosen configuration, our numerical results provide an in-depth understanding of EM modeling's pros and cons when supervised $h+p$ refinement schemes are applied.