论文标题

无线网络中的分布式智能

Distributed Intelligence in Wireless Networks

论文作者

Liu, Xiaolan, Yu, Jiadong, Liu, Yuanwei, Gao, Yue, Mahmoodi, Toktam, Lambotharan, Sangarapillai, Tsang, Danny H. K.

论文摘要

由于时间延迟,高功耗,安全性和隐私问题,基于云的解决方案的效率变得降低,这是由于数十亿个连接的无线设备以及通常在网络边缘产生的数据的数十亿个字节引起的。边缘计算和人工智能(AI)技术的混合物可以最佳地转移足智多谋的计算服务器,更接近网络边缘,从而为高级AI应用程序(例如,视频/音频监视和个人推荐系统)提供支持,通过启用智能决策,并避免在可能的数据上进行计算,并避免使用机器的计算,并避免使用智能的决策(MM基于云的集中学习可能存在的隐私。因此,AI被设想在未来的沟通和网络系统中变得本地和无处不在。在本文中,我们全面概述了本机 - ai无线网络的保护下的无线网络中分布式智能的最新进展,重点介绍了对AI-ai-ai-ai启用边缘计算的基本概念,对AI-Edge Edge计算的基本概念,对分布式学习网络的设计设计,以促进交流技术,并在分布式学习方面进行分配,并在分布式学习方面进行了交流。我们强调了混合分布式学习体系结构与最先进的分布式学习技术相比的优势。我们总结了无线网络中分布式情报中现有研究贡献的挑战,并确定了潜在的未来机会。

The cloud-based solutions are becoming inefficient due to considerably large time delays, high power consumption, security and privacy concerns caused by billions of connected wireless devices and typically zillions bytes of data they produce at the network edge. A blend of edge computing and Artificial Intelligence (AI) techniques could optimally shift the resourceful computation servers closer to the network edge, which provides the support for advanced AI applications (e.g., video/audio surveillance and personal recommendation system) by enabling intelligent decision making on computing at the point of data generation as and when it is needed, and distributed Machine Learning (ML) with its potential to avoid the transmission of large dataset and possible compromise of privacy that may exist in cloud-based centralized learning. Therefore, AI is envisioned to become native and ubiquitous in future communication and networking systems. In this paper, we conduct a comprehensive overview of recent advances in distributed intelligence in wireless networks under the umbrella of native-AI wireless networks, with a focus on the basic concepts of native-AI wireless networks, on the AI-enabled edge computing, on the design of distributed learning architectures for heterogeneous networks, on the communication-efficient technologies to support distributed learning, and on the AI-empowered end-to-end communications. We highlight the advantages of hybrid distributed learning architectures compared to the state-of-art distributed learning techniques. We summarize the challenges of existing research contributions in distributed intelligence in wireless networks and identify the potential future opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源