论文标题

预算注释深入积极学习

Deep Active Learning with Budget Annotation

论文作者

Gikunda, Kinyua

论文摘要

在数十年中收集的数字数据,并且使用信息技术使用目前正在生产的数据是无标记的数据或数据,而没有描述。未标记的数据相对易于获取,但即使使用域专家也可以标记昂贵。最近的大多数著作都集中在使用不确定性指标来解决此问题的主动学习上。尽管大多数不确定性选择策略都非常有效,但他们无法考虑未标记的实例的信息,并且很容易查询异常值。为了应对这些挑战,我们提出了一种计算实例的不确定性和信息性的混合方法,然后使用预算注释者自动标记计算的实例。为了降低注释成本,我们采用了最先进的预培训模型,以避免查询这些模型中已包含的信息。我们对不同数据集的广泛实验证明了该方法的功效。

Digital data collected over the decades and data currently being produced with use of information technology is vastly the unlabeled data or data without description. The unlabeled data is relatively easy to acquire but expensive to label even with use of domain experts. Most of the recent works focus on use of active learning with uncertainty metrics measure to address this problem. Although most uncertainty selection strategies are very effective, they fail to take informativeness of the unlabeled instances into account and are prone to querying outliers. In order to address these challenges we propose an hybrid approach of computing both the uncertainty and informativeness of an instance, then automaticaly label the computed instances using budget annotator. To reduce the annotation cost, we employ the state-of-the-art pre-trained models in order to avoid querying information already contained in those models. Our extensive experiments on different sets of datasets demonstrate the efficacy of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源