论文标题
半随机图模型中的汉密尔顿周期
Hamilton cycles in a semi-random graph model
论文作者
论文摘要
我们表明,在特定的半随机型号中最多最多$ 1.85 n $回合后我们可以建立一个汉密尔顿周期。在此模型中,在一轮中,我们在[n] $中给出了一个{统一的随机} $ v \,然后我们可以添加{nutyary} edge $ \ {v,w \} $。在最近的GAO,Macrury和Pralat的论文中,我们的结果提高了2.016 n $。
We show that with high probability we can build a Hamilton cycle after at most $1.85 n$ rounds in a particular semi-random model. In this model, in one round, we are given a {uniform random} $v\in[n]$ and then we can add an {arbitrary} edge $\{v,w\}$. Our result improves on $2.016 n$ in a recent paper of Gao, MacRury, and Pralat.