论文标题
具有银行Zaks固定点的量规理论的光谱函数
Spectral Functions of Gauge Theories with Banks-Zaks Fixed Points
论文作者
论文摘要
我们研究了在紫外线中渐近不含物质的理论的光谱函数,并在红外线中显示了河岸 - Zaks的保形固定点。使用扰动理论,Callan-Symanzik重新召集以及连接肾上腺素化组轨迹的UV-IR,我们通过分析整个复杂动量平面中的Gluon,Quark和Ghost Expagator。在弱耦合时,我们发现在所有磁场上都可以实现传播器的Källén-Lehmann光谱表示,并确定适合量规参数的范围。在强耦合时,复杂共轭分支的扩散使因果关系不可能。我们还得出了确定传播非分析性存在或不存在的缩放指数的关系。进一步的结果包括最多五个循环顺序的所有字段的光谱函数,共形窗口上的边界和算法,以在较高的循环下分析地分析运行量规耦合。讨论了我们的发现和扩展对其他理论的影响。
We investigate spectral functions of matter-gauge theories that are asymptotically free in the ultraviolet and display a Banks-Zaks conformal fixed point in the infrared. Using perturbation theory, Callan-Symanzik resummations, and UV-IR connecting renormalisation group trajectories, we analytically determine the gluon, quark, and ghost propagators in the entire complex momentum plane. At weak coupling, we find that a Källén-Lehmann spectral representation of propagators is achieved for all fields, and determine suitable ranges for gauge-fixing parameters. At strong coupling, a proliferation of complex conjugated branch cuts renders a causal representation impossible. We also derive relations for scaling exponents that determine the presence or absence of propagator non-analyticities. Further results include spectral functions for all fields up to five loop order, bounds on the conformal window, and an algorithm to find running gauge coupling analytically at higher loops. Implications of our findings and extensions to other theories are discussed.