论文标题

多点的五颜六色的helly定理,用于多个点的刺穿盒子

Colorful Helly Theorem for Piercing Boxes with Multiple Points

论文作者

Chakraborty, Sourav, Ghosh, Arijit, Nandi, Soumi

论文摘要

令$ h_c = h_c(d,n)$表示最小的积极整数,以便我们有$ \ Mathcal {f} _ {1} _ {1},\ dots,\ Mathcal {f} _ { $ h_ {c} $ - 可以用$ n $点刺穿的元素,然后在\ {1,\ dots,h_ {c} \} $中退出一个$ i \,以及所有$ k \ in \ in \ in \ {1,\ dots,\ dots,h_ {c} {c} {c} \} \ setMinus \} $ f_k \ in \ nathcal {f} _k $使以下大家庭$ \ MATHCAL {f} _i \ cup \ left \ left \ {f_k \; | \; | \; k \; k \ in \ in \ in \ {1,\ dots,\ dots,h_ _ {c} {c} {c} \} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \;也可以用$ n $点刺穿。在本文中,对于所有$ d $和$ n $的值,我们给出了$ h_ {c}(d,n)$的完整表征。我们的结果是Danzer和Grünbaum的多个点的穿孔轴平行盒进行了多彩概括(Combinatorica 1982)。

Let $H_c=H_c(d,n)$ denote the smallest positive integer such that if we have a collection of families $\mathcal{F}_{1}, \dots, \mathcal{F}_{H_{c}}$ of axis-parallel boxes in $\mathbb{R}^{d}$ with the property that every colorful $H_{c}$-tuple from the above families can be pierced by $n$ points then there exits an $i\in \{ 1, \dots, H_{c}\}$, and for all $k\in \{ 1, \dots, H_{c}\} \setminus\{i\}$ there exists $F_k\in\mathcal{F}_k$ such that the following extended family $\mathcal{F}_i\cup\left\{F_k\;|\;k\in \{1, \dots, H_{c}\}\;\mbox{and} \;k\neq i\right\}$ can also be pierced by $n$ points. In this paper, we give a complete characterization of $H_{c}(d,n)$ for all values of $d$ and $n$. Our result is a colorful generalization of piercing axis-parallel boxes with multiple points by Danzer and Grünbaum (Combinatorica 1982).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源