论文标题
多个属性公平:应用于欺诈检测
Multiple Attribute Fairness: Application to Fraud Detection
论文作者
论文摘要
我们提出了一个公平的衡量标准,以放松流行的平等赔率公平制度的平等条件进行分类。我们设计了一种迭代,模型,基于网格的启发式启发式,该启发式校准了每个敏感属性值的结果以符合度量。该启发式旨在处理高ARITH属性值并执行跨不同受保护属性值的结果的每个属性消毒。我们还将启发式方法扩展到多个属性。强调了我们激励的应用,欺诈检测,我们表明所提出的启发式能够在单个受保护的属性,多个受保护的属性的多个值中实现公平性。与当前关注两组的公平技术相比,我们在几个公共数据集中实现了可比的性能。
We propose a fairness measure relaxing the equality conditions in the popular equal odds fairness regime for classification. We design an iterative, model-agnostic, grid-based heuristic that calibrates the outcomes per sensitive attribute value to conform to the measure. The heuristic is designed to handle high arity attribute values and performs a per attribute sanitization of outcomes across different protected attribute values. We also extend our heuristic for multiple attributes. Highlighting our motivating application, fraud detection, we show that the proposed heuristic is able to achieve fairness across multiple values of a single protected attribute, multiple protected attributes. When compared to current fairness techniques, that focus on two groups, we achieve comparable performance across several public data sets.