论文标题
自我重力和贝肯斯坦 - 鹰熵
Self-Gravity and Bekenstein-Hawking Entropy
论文作者
论文摘要
我们通过直接求解4D半古典爱因斯坦方程来研究自我重力对熵的影响。特别是,我们专注于Bekenstein-Hawking Formula是否在自我实现非常强大的情况下达到。例如,我们考虑了一个简单的球形对称静态配置,该配置由许多量子组成,并为$ \ hbar $构建了一个自一致的非扰动解决方案,其中熵准确地遵循了许多本地自由度的区域定律。这可能是量子理论中黑洞的候选者。它代表具有接近浮雕的紧凑型密集构型,并且内部通常由于粒子的创造而表现得像局部热状态。在这里,信息内容存储在内部体积中,自我重力在将熵从数量法变为区域定律中起着至关重要的作用。我们最终讨论了对量子重力中黑洞的影响,并将熵视图作为重力电荷的投机视图。
We study the effect of self-gravity on entropy by directly solving the 4D semi-classical Einstein equation. In particular, we focus on whether the Bekenstein-Hawking formula holds when self-gravity is extremely strong. As an example, we consider a simple spherically symmetric static configuration consisting of many quanta and construct a self-consistent non-perturbative solution for $\hbar$ in which the entropy exactly follows the area law for many local degrees of freedom of any kind. This can be a candidate for black holes in quantum theory. It represents a compact dense configuration with near-Planckian curvatures, and the interior typically behaves like a local thermal state due to particle creation. Here, the information content is stored in the interior bulk, and the self-gravity plays an essential role in changing the entropy from the volume law to the area law. We finally discuss implications to black holes in quantum gravity and a speculative view of entropy as a gravitational charge.