论文标题

无关定理,用于标量 - 触发诱导的引力波

No-go Theorem for Scalar-Trispectrum-Induced Gravitational Waves

论文作者

Garcia-Saenz, Sebastian, Pinol, Lucas, Renaux-Petel, Sébastien, Werth, Denis

论文摘要

我们表明,原始三光谱对标量诱导的随机引力波背景的能量密度的贡献不能超过常规通货膨胀场景中标量功率谱的贡献。具体而言,我们在规模不变理论的背景下证明,常规的三光谱既不能在所谓的等边构型中峰达到峰值,也不能以软动量极限差异的局部三光谱形状造成显着贡献。实际上,这些贡献总是比订单一(或较小)的数字小,将相对的一环校正乘以标量功率谱,必须比统一小得多,以便该理论在扰动下控制。由于不进行无关的定理仅值得假设,因此我们还简要讨论了一个依赖量表的标量频谱的玩具模型,该模型证实了我们无需结果的鲁棒性。

We show that the contribution of the primordial trispectrum to the energy density of the scalar-induced stochastic gravitational wave background cannot exceed the one from the scalar power spectrum in conventional inflationary scenarios. Specifically, we prove in the context of scale-invariant theories that neither regular trispectrum shapes peaking in so-called equilateral configurations, nor local trispectrum shapes diverging in soft momentum limits, can contribute significantly. Indeed, those contributions are always bound to be smaller than an order-one (or smaller) number multiplying the relative one-loop correction to the scalar power spectrum, necessarily much smaller than unity in order for the theory to be under perturbative control. Since a no-go theorem is only worth its assumptions, we also briefly discuss a toy model for a scale-dependent scalar spectrum, which confirms the robustness of our no-go result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源