论文标题

整数幂的超级智能公式的决定性公式

A determinantal formula for the hyper-sums of powers of integers

论文作者

Cereceda, José L.

论文摘要

对于非阴性整数$ r $和$ m $,让$ s_m^{(r)}(n)$表示$ r $ -fold sumpation(或hyper-sum)在第一个$ n $阳性整数上,$ n $ pastic Integers to $ m $ th powers,带有初始条件$ s_m^{(0)}(0)}(n)= n^m $。在本文中,我们为$ s_m^{(r)}(n)$提供了一个新的确定公式。具体来说,我们表明,对于所有整数,$ r \ geq 0 $和$ m \ geq 1 $,$ s_m^{(r)}(n)$与$ s_1^{(r)}(r)}(n)$乘以低hessenberg Matrix $ m-1 $ m-1 $ nviars bernoulli and + norder norker y + n norker norker norker nork y nork bernoulli和bernouli norker norker and y + norder norkeri和bernouli in + n) \ frac {r} {2} $。此外,每当$ r \ geq 1 $时,评估此决定因素会给我们$ s_m^{(r)}(n)$作为$ s_1^{(r)}(r)}(r)}(n)$ timple $ n_r $ a $ n_r $ m-1 $ m-m-1 $的偶尔或奇数,取决于$ m $ nd $ m $ ogg ogg ogg ogg ogg ogg ogg。

For non-negative integers $r$ and $m$, let $S_m^{(r)}(n)$ denote the $r$-fold summation (or hyper-sum) over the first $n$ positive integers to the $m$th powers, with the initial condition $S_m^{(0)}(n) =n^m$. In this paper, we derive a new determinantal formula for $S_m^{(r)}(n)$. Specifically, we show that, for all integers $r\geq 0$ and $m \geq 1$, $S_m^{(r)}(n)$ is proportional to $S_1^{(r)}(n)$ times the determinant of a lower Hessenberg matrix of order $m-1$ involving the Bernoulli numbers and the variable $N_r = n + \frac{r}{2}$. Furthermore, whenever $r\geq 1$, evaluating this determinant gives us $S_m^{(r)}(n)$ as $S_1^{(r)}(n)$ times an even or odd polynomial in $N_r$ of degree $m-1$, depending on whether $m$ is odd or even.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源