论文标题
名义匹配逻辑
Nominal Matching Logic
论文作者
论文摘要
我们介绍了名义匹配逻辑(NML)作为匹配逻辑与名称的扩展,并按照Gabbay-Pitts名义方法进行绑定。匹配逻辑是$ \ mathbb {k} $框架的基础,用于指定编程语言,并自动得出关联的工具(编译器,调试器,模型检查器,程序验证器)。匹配逻辑不包括名称绑定的原始概念,尽管可以通过编码来表示绑定操作员将函数的图表内部内部内部表示,从而将函数的图内置为从界名称到包含绑定名称的表达式。这种方法足以表示涉及绑定运算符的计算,但尚未对具有绑定语法的归纳推理(例如,推理超过$λ$ - terms)的支持。名义逻辑是一个正式的系统,用于推理名称和绑定,它为具有绑定的语法归纳推理提供了良好的和有力的原则,而NML继承了这些原则。我们讨论了语法和NML语义的设计替代方案,证明了元理论特性,并提供了示例以说明其表现力。特别是,我们展示了如何定义并用于证明$λ$ -calculus的标准属性,如何定义并使用$λ$ terms($α$ - 结构诱导)的感应原理。
We introduce Nominal Matching Logic (NML) as an extension of Matching Logic with names and binding following the Gabbay-Pitts nominal approach. Matching logic is the foundation of the $\mathbb{K}$ framework, used to specify programming languages and automatically derive associated tools (compilers, debuggers, model checkers, program verifiers). Matching logic does not include a primitive notion of name binding, though binding operators can be represented via an encoding that internalises the graph of a function from bound names to expressions containing bound names. This approach is sufficient to represent computations involving binding operators, but has not been reconciled with support for inductive reasoning over syntax with binding (e.g., reasoning over $λ$-terms). Nominal logic is a formal system for reasoning about names and binding, which provides well-behaved and powerful principles for inductive reasoning over syntax with binding, and NML inherits these principles. We discuss design alternatives for the syntax and the semantics of NML, prove meta-theoretical properties and give examples to illustrate its expressive power. In particular, we show how induction principles for $λ$-terms ($α$-structural induction) can be defined and used to prove standard properties of the $λ$-calculus.