论文标题
实体类型预测利用图形步行和实体描述
Entity Type Prediction Leveraging Graph Walks and Entity Descriptions
论文作者
论文摘要
知识图(kgs)中的实体类型信息(例如DBPEDIA,FREEBASE等)通常由于自动产生或人类策划而通常不完整。实体键入是分配或推断kg中实体的语义类型的任务。本文介绍了\ textit {grand},这是一种实体键入的新方法,利用RDF2VEC中的不同图形步行策略以及文本实体描述。 RDF2VEC首先生成图形步行,然后使用语言模型来获取图中每个节点的嵌入。这项研究表明,步行生成策略和嵌入模型对实体打字任务的性能有重大影响。所提出的方法的表现优于基准数据集DBPEDIA上的基线方法,而Figer在kgs中为细粒度和粗粒类别的实体打字的实体输入。结果表明,订单感知的RDF2VEC变体的组合以及文本实体描述的上下文嵌入可实现最佳结果。
The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation or human curation. Entity typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper presents \textit{GRAND}, a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions. RDF2vec first generates graph walks and then uses a language model to obtain embeddings for each node in the graph. This study shows that the walk generation strategy and the embedding model have a significant effect on the performance of the entity typing task. The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes. The results show that the combination of order-aware RDF2vec variants together with the contextual embeddings of the textual entity descriptions achieve the best results.