论文标题

周期性波导中的声学孤子:理论和实验

Acoustic solitons in a periodic waveguide: theory and experiments

论文作者

Sougleridis, Ioannis Ioannou, Richoux, Olivier, Achilleos, Vassos, Theocharis, Georgios, Desjouy, Cyril, Frantzeskakis, Dimitrios J.

论文摘要

我们在周期性变化的横截面的空气声波中研究了以脉冲样孤立波的形式的高振幅声波的传播。我们的数值模拟在两个维度上求解可压缩的Navier-Stokes方程,以及我们的实验结果,强烈表明,非线性损失源自涡流脱落(在段变化下)对于高振幅脉动的动力学至关重要。我们发现,即使在存在强耗散的情况下,孤立波也大致保留了其特征(如振幅宽度关系所述),通过对有效的Boussinesq方程的推导和分析获得。此外,我们提出了一种基于传输线的数值方案,能够很好地捕获实验结果。拟议的设计提供了一个新的游乐场,用于研究空气传播声学中分散性,非线性和散布的综合作用,而由于其简单性,它可​​以扩展到更高的尺寸。

We study the propagation of high-amplitude sound waves, in the form of pulse-like solitary waves, in an air-filled acoustic waveguide of periodically varying cross section. Our numerical simulations, solving the compressible Navier-Stokes equations in two dimensions, as well as our experimental results, strongly suggest that nonlinear losses, originated from vortex shedding (at the segment changes) are crucial in the dynamics of high amplitude pulses. We find that, even in the presence of strong dissipation, the solitary wave roughly retains its characteristics (as described by the amplitude-velocity-width relations), obtained by the derivation and analysis of an effective Boussinesq equation. In addition, we propose a transmission-line based numerical scheme, able to capture well the experimental results. The proposed design offers a new playground for the study of the combined effects of dispersion, nonlinearity and dissipation in air-borne acoustics, while, due to its simplicity, it can be extended to higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源