论文标题
极化图像的可分离四基质矩阵分解
Separable Quaternion Matrix Factorization for Polarization Images
论文作者
论文摘要
极化是横向波的独特特征,由Stokes参数表示。极化状态的分析可以揭示有关来源的宝贵信息。在本文中,我们提出了一个可分离的低级别四元素线性混合模型对极化信号:我们假设源因子矩阵的每一列等于极化数据矩阵的一列,并将相应的问题称为可分离的Quaternion矩阵分解(SQMF)。我们讨论了SQMF可以分解的矩阵的一些属性。为了确定季节空间中的源因子矩阵,我们提出了一种启发性投影算法启发的启发式算法,称为Quaternion连续投影算法(QSPA)。为了确保QSPA的有效性,提出了针对Quaternion矩阵的新归一化操作员。我们使用块坐标下降算法来计算实际数字空间中的非负因子激活矩阵。我们在极化图像表示和光偏光成像的应用中测试我们的方法,以验证其有效性。
Polarization is a unique characteristic of transverse wave and is represented by Stokes parameters. Analysis of polarization states can reveal valuable information about the sources. In this paper, we propose a separable low-rank quaternion linear mixing model to polarized signals: we assume each column of the source factor matrix equals a column of polarized data matrix and refer to the corresponding problem as separable quaternion matrix factorization (SQMF). We discuss some properties of the matrix that can be decomposed by SQMF. To determine the source factor matrix in quaternion space, we propose a heuristic algorithm called quaternion successive projection algorithm (QSPA) inspired by the successive projection algorithm. To guarantee the effectiveness of QSPA, a new normalization operator is proposed for the quaternion matrix. We use a block coordinate descent algorithm to compute nonnegative factor activation matrix in real number space. We test our method on the applications of polarization image representation and spectro-polarimetric imaging unmixing to verify its effectiveness.