论文标题
在具有顺序数据的迭代正规化高斯 - 纽顿方法的动态变体上
On a Dynamic Variant of the Iteratively Regularized Gauss-Newton Method with Sequential Data
论文作者
论文摘要
对于许多参数和状态估计问题,吸收新数据可以有助于产生未知数量的准确而快速的推断。虽然大多数现有的用于解决这些不良反向问题的算法只能与观察到的数据的一个实例一起使用,在这项工作中,我们提出了一个新框架,该框架使现有算法可以以顺序的方式反转多个数据实例。具体而言,我们将使用众所周知的迭代正规化高斯 - 纽顿方法(IRGNM),这是解决非线性反问题的变异方法。我们在存在高斯白噪声的情况下为提出的动态IRGNM算法开发了收敛分析理论。我们将该算法与经典的IRGNM相结合,以提供一种实用的(混合)算法,该算法可以在产生快速估计的同时依次转化数据。我们的工作包括所提出的迭代方案定义明确的证明,以及依赖于非线性反问题的标准假设的各种误差范围。我们使用几个数值实验来验证我们的理论发现,并突出合并顺序数据的好处。数值实验的上下文包括各种参数识别问题,包括Darcy流椭圆PDE示例和电阻抗层析成像的示例。
For numerous parameter and state estimation problems, assimilating new data as they become available can help produce accurate and fast inference of unknown quantities. While most existing algorithms for solving those kind of ill-posed inverse problems can only be used with a single instance of the observed data, in this work we propose a new framework that enables existing algorithms to invert multiple instances of data in a sequential fashion. Specifically we will work with the well-known iteratively regularized Gauss-Newton method (IRGNM), a variational methodology for solving nonlinear inverse problems. We develop a theory of convergence analysis for a proposed dynamic IRGNM algorithm in the presence of Gaussian white noise. We combine this algorithm with the classical IRGNM to deliver a practical (hybrid) algorithm that can invert data sequentially while producing fast estimates. Our work includes the proof of well-definedness of the proposed iterative scheme, as well as various error bounds that rely on standard assumptions for nonlinear inverse problems. We use several numerical experiments to verify our theoretical findings, and to highlight the benefits of incorporating sequential data. The context of the numerical experiments comprises various parameter identification problems including a Darcy flow elliptic PDE example, and that of electrical impedance tomography.