论文标题
理想的近似值$ n $ estanged类别
Ideal approximation in $n$-exangulated categories
论文作者
论文摘要
在本文中,我们研究了与$ n $外观类别中几乎$ n $ excACT结构相关的理想近似理论。介绍和研究了$ n $ - 理想的cotorsion对和$ n $ - $ n $ - $ \ mathbb {f} $ - 幻象形态的概念。特别是,让$ \ mathscr {c} $为满足条件(WIC)的外侧类别,并且$ \ nathcal {t} $是一个很好的嵌入$ n $ n $ cluster-cluster tilting子类别的$ \ mathscr {c} $,我们prove salce salce salce in Mathcal in Mathcal $ \ mathcal} $ {t}。
In this paper, we study the ideal approximation theory associated to almost $n$-exact structures in the $n$-exangulated category. The notions of $n$-ideal cotorsion pairs and $n$-$\mathbb{F}$-phantom morphisms are introduced and studied. In particular, let $\mathscr{C}$ be an extriangulated category which satisfies the condition (WIC) and $\mathcal{T}$ be a nicely embedded $n$-cluster tilting subcategory of $\mathscr{C}$, we prove Salce's Lemma in $\mathcal{T}$.