论文标题

基于伪对的自我相似性学习无监督的人重新识别

Pseudo-Pair based Self-Similarity Learning for Unsupervised Person Re-identification

论文作者

Wu, Lin, Liu, Deyin, Zhang, Wenying, Chen, Dapeng, Ge, Zongyuan, Boussaid, Farid, Bennamoun, Mohammed, Shen, Jialie

论文摘要

人重新识别(RE-ID)对于视频监视系统非常重要,通过估计一对跨摄像机的人短裤之间的相似性。估计这种相似性的当前方法需要大量的标记样品进行监督培训。在本文中,我们提出了一种基于伪对的自我相似性学习方法,为无人看管的人重新注释而没有人类注释。与使用基于全局聚类的伪标签的常规无监督的重新ID方法不同,我们构建了补丁替代类作为初始监督,并建议通过成对梯度引导的相似性分离将伪标签分配给图像。这可以将图像集中在伪对中,并且可以在训练期间更新伪图。基于伪对,我们建议通过新颖的自相似性学习来提高相似性函数的概括:它通过相似性从单个图像中学习局部歧视性特征,并通过相似性通过相似性发现了整个图像的斑块对应关系。相似性学习基于渠道的注意,从图像中检测到不同的局部特征。相似性学习采用可变形的卷积和非本地块来对齐斑块,以使跨图像相似。几个重新ID基准数据集的实验结果证明了所提出的方法比最新方法的优越性。

Person re-identification (re-ID) is of great importance to video surveillance systems by estimating the similarity between a pair of cross-camera person shorts. Current methods for estimating such similarity require a large number of labeled samples for supervised training. In this paper, we present a pseudo-pair based self-similarity learning approach for unsupervised person re-ID without human annotations. Unlike conventional unsupervised re-ID methods that use pseudo labels based on global clustering, we construct patch surrogate classes as initial supervision, and propose to assign pseudo labels to images through the pairwise gradient-guided similarity separation. This can cluster images in pseudo pairs, and the pseudos can be updated during training. Based on pseudo pairs, we propose to improve the generalization of similarity function via a novel self-similarity learning:it learns local discriminative features from individual images via intra-similarity, and discovers the patch correspondence across images via inter-similarity. The intra-similarity learning is based on channel attention to detect diverse local features from an image. The inter-similarity learning employs a deformable convolution with a non-local block to align patches for cross-image similarity. Experimental results on several re-ID benchmark datasets demonstrate the superiority of the proposed method over the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源