论文标题

$ f(\ Mathcal {r},t)$ GREATITY的紧凑型星星的重力波回声

Gravitational wave echoes from compact stars in $f(\mathcal{R},T)$ gravity

论文作者

Bora, Jyatsnasree, Goswami, Umananda Dev

论文摘要

我们已经计算了$ f(\ Mathcal {r},t)$重力度量形式主义的紧凑型星的静态和球面对称解。为了描述紧凑型恒星的问题,我们使用了状态MIT袋模型方程(EOS)和彩色塑料锁(CFL)EOS。求解液压平衡方程,即,$ f(\ Mathcal {r},t)$ GRAVITY中的修改的TOV方程,我们获得了不同的恒星模型。最终讨论了此类恒星的质量拉迪乌斯概况。然后使用不同的参数分析这些配置的稳定性。从质量和半径的TOV方程的溶液中,我们检查了此类物体的紧凑性。发现与不切实际的EOS相似,例如MIT袋模型的更硬形式,在某些考虑因素下,现实的相互作用的夸克物质CFL EOS可以给出足够紧凑的恒星结构,足以在恒星边界外拥有光子球,因此可以回应GWS。发现获得的回声频率位于39-55 kHz的范围内。我们还表明,对于重力理论的不同参数化,恒星的结构以及回声频率也有很大差异。此外,我们从回声频率发射的角度限制了配对恒定值$β$。对于更硬的MIT袋型$β\ geq-2.474 $,对于具有质量夸克条件的CFL阶段$β\ geq-0.873 $,而对于大型情况,$β\ geq \ geq-0.813 $。

We have calculated the static and spherically symmetric solutions for compact stars in the $f(\mathcal{R},T)$ gravity metric formalism. To describe the matter of compact stars, we have used the MIT Bag model equation of state (EoS) and the color-flavor-locked (CFL) EoS. Solving the hydrostatic equilibrium equations i.e., the modified TOV equations in $f(\mathcal{R},T)$ gravity, we have obtained different stellar models. The mass-radius profiles for such stars are eventually discussed. The stability of these configurations are then analysed using different parameters. From the obtained solutions of TOV equations for mass and radius, we have checked the compactness of such objects. It is found that similar to the unrealistic EoS, like the stiffer form of the MIT Bag model, under some considerations the realistic interacting quark matter CFL EoS can give stellar structures which are compact enough to possess a photon sphere outside the stellar boundary and hence can echo GWs. The obtained echo frequencies are found to lie in the range of 39-55 kHz. Also we have shown that for different parametrizations of the gravity theory, the structure of stars and also the echo frequencies differ significantly. Moreover, we have constrained the pairing constant value $β$ from the perspective of emission of echo frequencies. For the stiffer MIT Bag model $β\geq-2.474$ and for the CFL phase with massless quark condition $β\geq-0.873$, whereas for the massive case $β\geq-0.813$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源