论文标题

一项关于使用边缘TPU进行眼睛眼睛图像分割的研究

A Study on the Use of Edge TPUs for Eye Fundus Image Segmentation

论文作者

Civit-Masot, Javier, Luna-Perejon, Francisco, Corral, Jose Maria Rodriguez, Dominguez-Morales, Manuel, Morgado-Estevez, Arturo, Civit, Anton

论文摘要

可以使用具有快速有效分割网络的深度学习方法来实施医疗图像分割。单板计算机(SBC)由于内存和处理限制而难以用于训练深网。诸如Google Edge TPU之类的特定硬件使其适合使用复杂的预训练网络进行实时预测。在这项工作中,我们研究了两个SBC的性能,具有和不进行硬件加速度进行底眼图像分割,尽管这项研究的结论可以通过其他类型的医学图像的深层神经网络应用于分割。为了测试硬件加速度的好处,我们使用先前已发布的工作中的网络和数据集,并通过使用具有超声甲状腺图像的数据集进行测试来概括它们。我们在SBC中测量预测时间,并将其与基于云的TPU系统进行比较。结果表明,使用Edge TPU,机器学习加速SBC的可行性可加速光盘和杯子分段,每个图像可获得低于25毫秒的时间。

Medical image segmentation can be implemented using Deep Learning methods with fast and efficient segmentation networks. Single-board computers (SBCs) are difficult to use to train deep networks due to their memory and processing limitations. Specific hardware such as Google's Edge TPU makes them suitable for real time predictions using complex pre-trained networks. In this work, we study the performance of two SBCs, with and without hardware acceleration for fundus image segmentation, though the conclusions of this study can be applied to the segmentation by deep neural networks of other types of medical images. To test the benefits of hardware acceleration, we use networks and datasets from a previous published work and generalize them by testing with a dataset with ultrasound thyroid images. We measure prediction times in both SBCs and compare them with a cloud based TPU system. The results show the feasibility of Machine Learning accelerated SBCs for optic disc and cup segmentation obtaining times below 25 milliseconds per image using Edge TPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源