论文标题

Rendernet:在大规模室内环境中使用虚拟观点的视觉重新定位

RenderNet: Visual Relocalization Using Virtual Viewpoints in Large-Scale Indoor Environments

论文作者

Zhang, Jiahui, Tang, Shitao, Qiu, Kejie, Huang, Rui, Fang, Chuan, Cui, Le, Dong, Zilong, Zhu, Siyu, Tan, Ping

论文摘要

在3D视觉中,视觉重新定位已被广泛讨论:鉴于预构建的3D视觉图,估计查询图像的6 DOF(自由度)姿势。大规模室内环境中的重新定位可实现有吸引力的应用程序,例如增强现实和机器人导航。但是,当相机移动时,在这种环境中,外观变化很快,这对于重新定位系统来说是具有挑战性的。为了解决这个问题,我们提出了一种基于虚拟视图综合方法Rendernet,以丰富有关此特定情况的数据库和完善姿势。我们选择直接呈现虚拟观点的所需全局和本地特征,而不是渲染需要高质量3D模型的真实图像,并分别将它们应用于随后的图像检索和功能匹配操作中。所提出的方法在很大程度上可以改善大规模室内环境中的性能,例如,在INLOC数据集中,提高了7.1 \%和12.2 \%的改善。

Visual relocalization has been a widely discussed problem in 3D vision: given a pre-constructed 3D visual map, the 6 DoF (Degrees-of-Freedom) pose of a query image is estimated. Relocalization in large-scale indoor environments enables attractive applications such as augmented reality and robot navigation. However, appearance changes fast in such environments when the camera moves, which is challenging for the relocalization system. To address this problem, we propose a virtual view synthesis-based approach, RenderNet, to enrich the database and refine poses regarding this particular scenario. Instead of rendering real images which requires high-quality 3D models, we opt to directly render the needed global and local features of virtual viewpoints and apply them in the subsequent image retrieval and feature matching operations respectively. The proposed method can largely improve the performance in large-scale indoor environments, e.g., achieving an improvement of 7.1\% and 12.2\% on the Inloc dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源