论文标题

使用原子线图神经网络(Alignn)快速预测声子结构和属性

Rapid Prediction of Phonon Structure and Properties using an Atomistic Line Graph Neural Network (ALIGNN)

论文作者

Gurunathan, Ramya, Choudhary, Kamal, Tavazza, Francesca

论文摘要

声子密度的状态(DOS)总结了由结构支撑的晶格振动模式,并提供有关材料稳定性,热力学常数和热传输系数的丰富信息。在这里,我们提出了一个原子图神经网络(Alignn)模型,用于预测状态的声子密度以及衍生的热力学特性。该模型在JARVIS-DFT(各种集成模拟的联合自动化存储库:密度函数理论)数据库中包含的14,000多个声子光谱的数据库中进行了训练。该模型的预测显示以捕获声子密度验证的光谱特征,有效地对动态稳定性进行了分类,并导致对DOS衍生的热力学和热力学特性的准确预测,包括热容量$ c _ {\ mathrm {v}} $,振动端口$ s _ _ _ { $τ^{ - 1} _ {\ mathrm {i}} $。与这些材料属性的直接深度学习预测以及基于声音DOS的分析简化(包括Debye或Born-Von Karman模型)相比,DOS介导的Alignn模型提供了优越的预测。最后,Alignn模型用于预测JARVIS-DFT数据库中列出的大约40,000个其他材料的声子光谱和属性,这些材料可在其他开源的高通量DFT DFT语音数据库中尽可能验证。

The phonon density-of-states (DOS) summarizes the lattice vibrational modes supported by a structure, and gives access to rich information about the material's stability, thermodynamic constants, and thermal transport coefficients. Here, we present an atomistic line graph neural network (ALIGNN) model for the prediction of the phonon density of states and the derived thermal and thermodynamic properties. The model is trained on a database of over 14,000 phonon spectra included in the JARVIS-DFT (Joint Automated Repository for Various Integrated Simulations: Density Functional Theory) database. The model predictions are shown to capture the spectral features of the phonon density-of-states, effectively categorize dynamical stability, and lead to accurate predictions of DOS-derived thermal and thermodynamic properties, including heat capacity $C_{\mathrm{V}}$, vibrational entropy $S_{\mathrm{vib}}$, and the isotopic phonon scattering rate $τ^{-1}_{\mathrm{i}}$. The DOS-mediated ALIGNN model provides superior predictions when compared to a direct deep-learning prediction of these material properties as well as predictions based on analytic simplifications of the phonon DOS, including the Debye or Born-von Karman models. Finally, the ALIGNN model is used to predict the phonon spectra and properties for about 40,000 additional materials listed in the JARVIS-DFT database, which are validated as far as possible against other open-sourced high-throughput DFT phonon databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源