论文标题
Neuricam:物联网摄像机的键框视频超分辨率和着色
NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras
论文作者
论文摘要
我们提出了Neuricam,这是一种基于深度学习的新型系统,可从低功耗双模式IoT相机系统实现视频捕获。我们的想法是设计一个双模式摄像机系统,其中第一个模式是低功率(1.1 MW),但仅输出灰色尺度,低分辨率和嘈杂的视频,第二种模式会消耗更高的功率(100 MW),但输出颜色和更高的分辨率图像。为了减少总能源消耗,我们在高功率模式下大量占用了每秒一次的图像。然后,该相机系统的数据将无线发送到附近的插入网关,在那里我们运行实时神经网络解码器以重建一个高分辨率的颜色视频。为了实现这一目标,我们基于特征映射与每个空间位置的输入框架内容之间的相关性,引入了一种注意力滤波器机制,该机制将不同的权重分配给不同的特征。我们使用现成的摄像机设计无线硬件原型,并解决包括数据包丢失和透视不匹配在内的实用问题。我们的评估表明,与现有系统相比,我们的双相机方法可将能耗降低7倍。此外,我们的模型可在先前的单个和双相机视频超分辨率方法和5.6 dB RGB增益中获得3.7 dB的平均灰度PSNR增益,而先前的颜色传播方法则获得了5.6 dB RGB。开源代码:https://github.com/vb000/neuricam。
We present NeuriCam, a novel deep learning-based system to achieve video capture from low-power dual-mode IoT camera systems. Our idea is to design a dual-mode camera system where the first mode is low-power (1.1 mW) but only outputs grey-scale, low resolution, and noisy video and the second mode consumes much higher power (100 mW) but outputs color and higher resolution images. To reduce total energy consumption, we heavily duty cycle the high power mode to output an image only once every second. The data for this camera system is then wirelessly sent to a nearby plugged-in gateway, where we run our real-time neural network decoder to reconstruct a higher-resolution color video. To achieve this, we introduce an attention feature filter mechanism that assigns different weights to different features, based on the correlation between the feature map and the contents of the input frame at each spatial location. We design a wireless hardware prototype using off-the-shelf cameras and address practical issues including packet loss and perspective mismatch. Our evaluations show that our dual-camera approach reduces energy consumption by 7x compared to existing systems. Further, our model achieves an average greyscale PSNR gain of 3.7 dB over prior single and dual-camera video super-resolution methods and 5.6 dB RGB gain over prior color propagation methods. Open-source code: https://github.com/vb000/NeuriCam.