论文标题
OpenFilter:一个民主化研究访问社交媒体AR AR过滤器的框架
OpenFilter: A Framework to Democratize Research Access to Social Media AR Filters
论文作者
论文摘要
增强自拍照的现实或AR过滤器在社交媒体平台上已经非常受欢迎,用于各种应用程序,包括营销,娱乐和美学。鉴于AR面部过滤器的广泛采用以及面孔在我们的社会结构和关系中的重要性,科学界从心理,艺术和社会学的角度分析此类过滤器的影响增加了。但是,该领域的定量分析很少,这主要是由于缺乏具有应用AR过滤器的面部图像的公开数据集。大多数社交媒体平台的专有性,紧密的性质不允许用户,科学家和从业人员访问代码和可用AR面孔过滤器的详细信息。从这些平台上刮擦面孔以收集数据在道德上是不可接受的,因此应在研究中避免。在本文中,我们介绍了OpenFilter,这是一个灵活的框架,可在社交媒体平台上使用AR过滤器,可在现有的大量人体面孔上使用。此外,我们共享FairBeauty和B-LFW,这是公开可用的Fairface和LFW数据集的两个美化版本,我们概述了这些美化数据集的分析得出的见解。
Augmented Reality or AR filters on selfies have become very popular on social media platforms for a variety of applications, including marketing, entertainment and aesthetics. Given the wide adoption of AR face filters and the importance of faces in our social structures and relations, there is increased interest by the scientific community to analyze the impact of such filters from a psychological, artistic and sociological perspective. However, there are few quantitative analyses in this area mainly due to a lack of publicly available datasets of facial images with applied AR filters. The proprietary, close nature of most social media platforms does not allow users, scientists and practitioners to access the code and the details of the available AR face filters. Scraping faces from these platforms to collect data is ethically unacceptable and should, therefore, be avoided in research. In this paper, we present OpenFilter, a flexible framework to apply AR filters available in social media platforms on existing large collections of human faces. Moreover, we share FairBeauty and B-LFW, two beautified versions of the publicly available FairFace and LFW datasets and we outline insights derived from the analysis of these beautified datasets.