论文标题

使用符号分解的面向决策的两参数Fisher信息敏感性

Decision-oriented two-parameter Fisher information sensitivity using symplectic decomposition

论文作者

Yang, Jiannan

论文摘要

Fisher Information Matrix(FIM)的特征值和特征向量可以揭示系统中最敏感的方向,并且在科学和工程中具有广泛的应用。我们为FIM提出了特征值分解的符号变体,并针对两参数共轭对提取灵敏度信息。符号方法将FIM分解到均匀的符号基础上。这种符合性结构可以揭示两参数对之间的其他灵敏度信息,否则以正交基础隐藏在标准特征值分解中。提出的灵敏度方法可以应用于自然配对的两参数分布参数,或通过重组或重新参数化FIM来实现决策的配对。它可以与标准特征值分解一起使用,并以可忽略的额外成本提供对灵敏度分析的更多见解。

The eigenvalues and eigenvectors of the Fisher information matrix (FIM) can reveal the most and least sensitive directions of a system and it has wide application across science and engineering. We present a symplectic variant of the eigenvalue decomposition for the FIM and extract the sensitivity information with respect to two-parameter conjugate pairs. The symplectic approach decomposes the FIM onto an even-dimensional symplectic basis. This symplectic structure can reveal additional sensitivity information between two-parameter pairs, otherwise concealed in the orthogonal basis from the standard eigenvalue decomposition. The proposed sensitivity approach can be applied to naturally paired two-parameter distribution parameters, or decision-oriented pairing via re-grouping or re-parameterization of the FIM. It can be utilised in tandem with the standard eigenvalue decomposition and offer additional insight into the sensitivity analysis at negligible extra cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源