论文标题
通过不断学习的高级空空间平衡稳定性和可塑性
Balancing Stability and Plasticity through Advanced Null Space in Continual Learning
论文作者
论文摘要
持续学习是一种学习范式,它通过资源约束依次学习任务,其中关键挑战是稳定性 - 塑性困境,即同时具有稳定性以防止灾难性忘记旧任务和可及时学习新任务的可变性是不安的。在本文中,我们提出了一种新的持续学习方法,即先进的空空间(ADN),以平衡稳定性和可塑性,而无需存储以前任务的任何旧数据。具体而言,为了获得更好的稳定性,ADN使用低级别近似来获得新的空空间并将梯度投射到空空间上,以防止干扰过去的任务。为了控制无效空间的产生,我们引入了不均匀的约束强度,以进一步减少遗忘。此外,我们提出了一种简单但有效的方法,即任务内蒸馏,以提高当前任务的性能。最后,从理论上讲,无效空间分别在可塑性和稳定性中起关键作用。实验结果表明,与最先进的持续学习方法相比,所提出的方法可以实现更好的性能。
Continual learning is a learning paradigm that learns tasks sequentially with resources constraints, in which the key challenge is stability-plasticity dilemma, i.e., it is uneasy to simultaneously have the stability to prevent catastrophic forgetting of old tasks and the plasticity to learn new tasks well. In this paper, we propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks. Specifically, to obtain better stability, AdNS makes use of low-rank approximation to obtain a novel null space and projects the gradient onto the null space to prevent the interference on the past tasks. To control the generation of the null space, we introduce a non-uniform constraint strength to further reduce forgetting. Furthermore, we present a simple but effective method, intra-task distillation, to improve the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.