论文标题

深入深入深入集群

A Deep Dive into Deep Cluster

论文作者

Mustapha, Ahmad, Khreich, Wael, Masr, Wasim

论文摘要

深度学习表明,在图像和语音识别等不同领域的传统机器学习方法上取得了重大改进。他们在基准数据集上的成功通过从业人员通过验证的模型转移到了现实世界中。使用监督学习预处理的视觉模型需要大量昂贵的数据注释。为了应对这一限制,已经提出了DeepCluster(一种简单且可扩展的视觉表示预处理)。但是,该模型的基本工作尚不清楚。在本文中,我们分析了DeepCluster内部质量,并详尽地评估了各种超参数在三个不同数据集上的影响。因此,我们提出了一个解释算法在实践中起作用的原因。我们还表明,深簇收敛和性能高度取决于卷积层随机初始化过滤器的质量与所选数量簇数之间的相互作用。此外,我们证明连续聚类对于深簇收敛并不重要。因此,聚类阶段的早期停止将减少训练时间,并允许算法扩展到大型数据集。最后,我们在半监督的设置中得出了合理的超参数选择标准。

Deep Learning has demonstrated a significant improvement against traditional machine learning approaches in different domains such as image and speech recognition. Their success on benchmark datasets is transferred to the real-world through pretrained models by practitioners. Pretraining visual models using supervised learning requires a significant amount of expensive data annotation. To tackle this limitation, DeepCluster - a simple and scalable unsupervised pretraining of visual representations - has been proposed. However, the underlying work of the model is not yet well understood. In this paper, we analyze DeepCluster internals and exhaustively evaluate the impact of various hyperparameters over a wide range of values on three different datasets. Accordingly, we propose an explanation of why the algorithm works in practice. We also show that DeepCluster convergence and performance highly depend on the interplay between the quality of the randomly initialized filters of the convolutional layer and the selected number of clusters. Furthermore, we demonstrate that continuous clustering is not critical for DeepCluster convergence. Therefore, early stopping of the clustering phase will reduce the training time and allow the algorithm to scale to large datasets. Finally, we derive plausible hyperparameter selection criteria in a semi-supervised setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源