论文标题

非线性和随机动力学中的特殊点

Exceptional points in nonlinear and stochastic dynamics

论文作者

Weis, Cheyne, Fruchart, Michel, Hanai, Ryo, Kawagoe, Kyle, Littlewood, Peter B., Vitelli, Vincenzo

论文摘要

我们研究了一类通常发生的分叉,这些分叉发生在动态系统中,其耦合的非偶联耦合范围从耦合神经元的模型到捕食者 - 捕集系统和非线性振荡器。在这些分叉中,扩展的吸引子,例如极限周期,限制托里和奇怪的吸引子以与干草叉分叉中的固定点相似的方式合并并分裂。我们表明,这种合并和分裂与消失的Lyapunov指数的协变量lyapunov向量的合并一致,从而将特殊点的概念推广到非线性动力学系统。我们区分两类分叉,分别与过渡时协变量的lyapunov载体的连续和不连续行为相对应。我们概述了系统动力学的广义特殊点的一些物理后果,包括非重点响应,毁灭等距和对噪声的敏感性增强。我们通过神经科学,生态学和物理学的具体例子来说明结果。当应用于解释现有的实验观察结果时,我们的分析提出了对浮游生物群落的种群动力学观察到的非平凡阶段延迟的简单解释,以及最近测量的旋转逆转统计量,用于浸入雷利 - 贝纳德对流细胞中的固体体。

We study a class of bifurcations generically occurring in dynamical systems with non-mutual couplings ranging from models of coupled neurons to predator-prey systems and non-linear oscillators. In these bifurcations, extended attractors such as limit cycles, limit tori, and strange attractors merge and split in a similar way as fixed points in a pitchfork bifurcation. We show that this merging and splitting coincides with the coalescence of covariant Lyapunov vectors with vanishing Lyapunov exponents, generalizing the notion of exceptional points to non-linear dynamical systems. We distinguish two classes of bifurcations, corresponding respectively to continuous and discontinuous behaviors of the covariant Lyapunov vectors at the transition. We outline some physical consequences of generalized exceptional points on the dynamics of the system, including non-reciprocal responses, the destruction of isochrons, and enhanced sensitivity to noise. We illustrate our results with concrete examples from neuroscience, ecology, and physics. When applied to interpret existing experimental observations, our analysis suggests a simple explanation for the non-trivial phase delays observed in the population dynamics of plankton communities and the recently measured statistics of rotation reversals for a solid body immersed in a Rayleigh-Bénard convection cell.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源