论文标题

在子组下的有限对称域和parseval-plancherel-type公式上的加权伯格曼内部产品计算

Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval-Plancherel-Type Formulas under Subgroups

论文作者

Nakahama, Ryosuke

论文摘要

令$(g,g_1)=(g,(g^σ)_0)$为对称的圆形类型,我们考虑一对遗传学对称空间$ d_1 = g_1/k_1/k_1 \ subset d = g/k $ p}^+)^σ\ subset {\ mathfrak p}^+$。然后,$ g $的通用覆盖组$ \ widetilde {g} $在加权的Bergman空间$ {\ Mathcal H}_λ(d)\ subset {\ Mathcal O}(d)= {\ Mathcal O}_λ(D)$ d $ for $ d $ for for $ $ $λ上。它限制了子组$ \ wideTilde {g} _1 $ $分解和多样性,其分支定律由hua-kostant-schmid-kobayashi的公式明确地给出,以$ \ wideTilde {k} _1 $ -deccol $ -deccort of the Mathcosect of $ \ widectrive of。 $ {\ mathfrak p}^+_ 2:=({{\ Mathfrak p}^+)^{ - σ} \ subset {\ mathfrak p}^+$ plyenmials的p}^+_ 2)$多项式$。本文的目的是了解限制$ {\ Mathcal H}_λ(d)| _ {\ widetilde {g} _1} $的分解,通过研究每种$ \ widetilde {k} _1 $ -type in $ { p}^+_ 2)\ subset {\ Mathcal H}_λ(d)$。例如,通过明确计算$ f = f = f(x_2)\ in {\ mathcal p} in {\ mathfrak p}^+_ 2)$ in n narm $ \ vert f \ vert f \vert_λ$,我们可以确定parseval-plancherel-type type form $ {\ mather-type typemula $ { h}_λ(d)| _ {\ widetilde {g} _1} $。另外,通过计算$ \ langle f(x_2)的杆子,{\ rm e}^{(x | \ overline {z})_ {{\ Mathfrak p}^+}} \ rangle_ {λ} $ for $ f(x_2) p}^+_ 2)$,$ x =(x_1,x_2)$,$ z \ in {\ mathfrak p}^+= {\ mathfrak p}^+_ 1 \ oplus {\ mathfrak p}^+_ 2 $ o}_λ(d)| _ {\ widetilde {g} _1} $也适用于非独立范围的$λ$。在本文中,我们考虑了所有$ \ widetilde {k} _1 $ -Types in $ {\ Mathcal P}({\ Mathfrak P}^+_ 2)$。

Let $(G,G_1)=(G,(G^σ)_0)$ be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces $D_1=G_1/K_1\subset D=G/K$, realized as bounded symmetric domains in complex vector spaces ${\mathfrak p}^+_1:=({\mathfrak p}^+)^σ\subset{\mathfrak p}^+$ respectively. Then the universal covering group $\widetilde{G}$ of $G$ acts unitarily on the weighted Bergman space ${\mathcal H}_λ(D)\subset{\mathcal O}(D)={\mathcal O}_λ(D)$ on $D$ for sufficiently large $λ$. Its restriction to the subgroup $\widetilde{G}_1$ decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua-Kostant-Schmid-Kobayashi's formula in terms of the $\widetilde{K}_1$-decomposition of the space ${\mathcal P}({\mathfrak p}^+_2)$ of polynomials on ${\mathfrak p}^+_2:=({\mathfrak p}^+)^{-σ}\subset{\mathfrak p}^+$. The object of this article is to understand the decomposition of the restriction ${\mathcal H}_λ(D)|_{\widetilde{G}_1}$ by studying the weighted Bergman inner product on each $\widetilde{K}_1$-type in ${\mathcal P}({\mathfrak p}^+_2)\subset{\mathcal H}_λ(D)$. For example, by computing explicitly the norm $\Vert f\Vert_λ$ for $f=f(x_2)\in{\mathcal P}({\mathfrak p}^+_2)$, we can determine the Parseval-Plancherel-type formula for the decomposition of ${\mathcal H}_λ(D)|_{\widetilde{G}_1}$. Also, by computing the poles of $\langle f(x_2),{\rm e}^{(x|\overline{z})_{{\mathfrak p}^+}}\rangle_{λ,x}$ for $f(x_2)\in{\mathcal P}({\mathfrak p}^+_2)$, $x=(x_1,x_2)$, $z\in{\mathfrak p}^+={\mathfrak p}^+_1\oplus{\mathfrak p}^+_2$, we can get some information on branching of ${\mathcal O}_λ(D)|_{\widetilde{G}_1}$ also for $λ$ in non-unitary range. In this article we consider these problems for all $\widetilde{K}_1$-types in ${\mathcal P}({\mathfrak p}^+_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源