论文标题

应用于野火预测系统的平行新颖搜索元启发式

A Parallel Novelty Search Metaheuristic Applied to a Wildfire Prediction System

论文作者

Strappa, Jan, Caymes-Scutari, Paola, Bianchini, Germán

论文摘要

野火是一种高度普遍的多毒物环境现象。这种现象的影响包括人类损失,环境破坏和高昂的经济成本。为了减轻这些效果,已经开发了几个计算机模拟系统,以根据一组输入参数来预测火灾行为,也称为场景(风速和方向;温度;等)。但是,由于某些变量值的不确定性,模拟的结果通常具有高度的误差,因为它们尚不清楚,或者由于其测量可能是不精确,错误或无法实时执行的。先前的工作提出了多种结果的组合,以减少这种不确定性。最先进的方法基于并行优化策略,该策略使用健身函数来指导所有可能场景之间的搜索。尽管这些方法显示了预测质量的改善,但它们具有与用于选择场景的算法有关的一些局限性。为了克服这些局限性,在这项工作中,我们建议应用新颖性搜索范式,从而取代了目标函数所发现的解决方案的新颖性,从而允许搜索与彼此不同的行为连续生成解决方案。这种方法避免了本地Optima,并且可能能够找到有用的解决方案,而其他算法很难或无法找到。与现有方法一样,该提案也可以适用于其他传播模型(洪水,雪崩或滑坡)。

Wildfires are a highly prevalent multi-causal environmental phenomenon. The impact of this phenomenon includes human losses, environmental damage and high economic costs. To mitigate these effects, several computer simulation systems have been developed in order to predict fire behavior based on a set of input parameters, also called a scenario (wind speed and direction; temperature; etc.). However, the results of a simulation usually have a high degree of error due to the uncertainty in the values of some variables, because they are not known, or because their measurement may be imprecise, erroneous, or impossible to perform in real time. Previous works have proposed the combination of multiple results in order to reduce this uncertainty. State-of-the-art methods are based on parallel optimization strategies that use a fitness function to guide the search among all possible scenarios. Although these methods have shown improvements in the quality of predictions, they have some limitations related to the algorithms used for the selection of scenarios. To overcome these limitations, in this work we propose to apply the Novelty Search paradigm, which replaces the objective function by a measure of the novelty of the solutions found, which allows the search to continuously generate solutions with behaviors that differ from one another. This approach avoids local optima and may be able to find useful solutions that would be difficult or impossible to find by other algorithms. As with existing methods, this proposal may also be adapted to other propagation models (floods, avalanches or landslides).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源