论文标题

3DOS:迈向3D开放式学习 - 基准和理解点云上的语义新颖性检测

3DOS: Towards 3D Open Set Learning -- Benchmarking and Understanding Semantic Novelty Detection on Point Clouds

论文作者

Alliegro, Antonio, Borlino, Francesco Cappio, Tommasi, Tatiana

论文摘要

近年来,关于分类,检测和分割问题的3D学习领域取得了重大进展。现有研究的绝大多数研究都集中在规范的封闭式条件上,忽略了现实世界的内在开放性质。这限制了需要管理新颖和未知信号的机器人和自治系统的能力。在这种情况下,利用3D数据可以是宝贵的资产,因为它提供了有关感知对象和场景几何形状的丰富信息。在本文中,我们提供了第一个关于3D开放式学习的广泛研究。我们介绍了3DOS:用于语义新颖性检测的新型测试床,该测试在语义(类别)转移方面越来越困难,并涵盖了几种设置,并涵盖了内域(合成对合成,真实的,真实)和交叉域(合成对真实)风景。此外,我们研究了相关的2D开放式文献,以了解其最近的改进是否在3D数据上有效。我们广泛的基准测试在同一连贯的图片中定位了几种算法,从而揭示了它们的优势和局限性。我们的分析结果可能是未来量身定制的3D开放式方法的可靠立足点。

In recent years there has been significant progress in the field of 3D learning on classification, detection and segmentation problems. The vast majority of the existing studies focus on canonical closed-set conditions, neglecting the intrinsic open nature of the real-world. This limits the abilities of robots and autonomous systems involved in safety-critical applications that require managing novel and unknown signals. In this context exploiting 3D data can be a valuable asset since it provides rich information about the geometry of perceived objects and scenes. With this paper we provide the first broad study on 3D Open Set learning. We introduce 3DOS: a novel testbed for semantic novelty detection that considers several settings with increasing difficulties in terms of semantic (category) shift, and covers both in-domain (synthetic-to-synthetic, real-to-real) and cross-domain (synthetic-to-real) scenarios. Moreover, we investigate the related 2D Open Set literature to understand if and how its recent improvements are effective on 3D data. Our extensive benchmark positions several algorithms in the same coherent picture, revealing their strengths and limitations. The results of our analysis may serve as a reliable foothold for future tailored 3D Open Set methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源