论文标题
用于基于锗孔的量子处理器的多尺度模拟方法
A Multiscale Simulation Approach for Germanium-Hole-Based Quantum Processor
论文作者
论文摘要
开发了一种多尺度仿真方法,以建模用于量子计算的锗(GE)孔的量子点(QD)阵列。在QD结构的三维数值量子设备模拟的指导下,获得了相邻孔QD之间的隧道耦合的分析模型。然后对QD阵列处理器的量子门操作和量子电路特性进行建模。与硅硅相比,对两分GE孔量子门的设备分析表明,栅极速度,较小的过程变异性和特征大小的严格要求。多尺度仿真方法允许从自下而上的,物理信息的角度评估量子处理器电路的性能。在GE QD阵列处理器上应用模拟方法表明其在量子化学模拟中制备高保真ANSATZ状态的潜力。
A multiscale simulation method is developed to model a quantum dot (QD) array of germanium (Ge) holes for quantum computing. Guided by three-dimensional numerical quantum device simulations of QD structures, an analytical model of the tunnel coupling between the neighboring hole QDs is obtained. Two-qubit entangling quantum gate operations and quantum circuit characteristics of the QD array processor are then modeled. Device analysis of two-qubit Ge hole quantum gates demonstrates faster gate speed, smaller process variability, and less stringent requirement of feature size, compared to its silicon counterpart. The multiscale simulation method allows assessment of the quantum processor circuit performance from a bottom-up, physics-informed perspective. Application of the simulation method to the Ge QD array processor indicates its promising potential for preparing high-fidelity ansatz states in quantum chemistry simulations.