论文标题

Turán的奇数树木数字

Turán number for odd-ballooning of trees

论文作者

Zhu, Xiutao, Chen, Yaojun

论文摘要

Turán数字$ ex(n,h)$是$ n $ vertices上$ h $ free Graph中的最大边数。令$ t $为任何树。 $ t $的奇数 - 由$ t_o $表示,是通过用包含边缘的奇数循环替换$ t $的每个边缘获得的图表,并且奇数周期的所有新顶点都不同。在本文中,我们确定了足够大的$ n $和$ t_o $的$ ex(n,t_o)$的确切值,这是因为Erdős等人的$ th $是$ t $的所有已知结果。 (1995),Hou等。 (2018)和Yuan(2018),并提供了一些反示例,并在Keevash and Sudakov(2004)的猜想中提供了3号的彩色示例,该样本的最大边数在任何单色副本中,$ h $ in $ 2 $ 2 $ 2 $ - edge-edge-edge-ed-ed-edge-edge-ed-ed-edge-edge-ed-ed-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-edge-ed offer-n $ n $的完整图$ n $的完整图。

The Turán number $ex(n,H)$ is the maximum number of edges in an $H$-free graph on $n$ vertices. Let $T$ be any tree. The odd-ballooning of $T$, denoted by $T_o$, is a graph obtained by replacing each edge of $T$ with an odd cycle containing the edge, and all new vertices of the odd cycles are distinct. In this paper, we determine the exact value of $ex(n,T_o)$ for sufficiently large $n$ and $T_o$ being good, which generalizes all the known results on $ex(n,T_o)$ for $T$ being a star, due to Erdős et al. (1995), Hou et al. (2018) and Yuan (2018), and provides some counterexamples with chromatic number 3 to a conjecture of Keevash and Sudakov (2004), on the maximum number of edges not in any monochromatic copy of $H$ in a $2$-edge-coloring of a complete graph of order $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源