论文标题

非本地汉密尔顿的纠缠能力

Capacity of Entanglement for Non-local Hamiltonian

论文作者

Shrimali, Divyansh, Bhowmick, Swapnil, Pandey, Vivek, Pati, Arun Kumar

论文摘要

纠缠能力的概念是热容量的量子信息理论上的对应物,该理论被定义为纠缠频谱的第二累积物。鉴于任何两分纯状态,我们可以将纠缠的能力定义为模块化哈密顿量在任何子系统的降低状态下的差异。在这里,我们研究了非本地哈密顿量下的该数量的动力学。具体来说,我们解决了一个问题:鉴于任意非本地哈密顿人,该系统可以拥有的纠缠能力是什么?作为一个有用的应用,我们表明,创建纠缠的量子速度限制不仅受非本地汉密尔顿的波动的约束,而且还取决于纠缠能力的平均平均时间。此外,我们讨论了这一数量的一般自我内向的哈密顿式,并提供了纠缠能力的速度。最后,我们根据纠缠的相对熵概括了纠缠两分的混合状态的能力,并表明上述定义降低了纯联合状态的纠缠能力。我们的结果可以在物理的不同领域中使用多个应用。

The notion of capacity of entanglement is the quantum information theoretic counterpart of the heat capacity which is defined as the second cumulant of the entanglement spectrum. Given any bipartite pure state, we can define the capacity of entanglement as the variance of the modular Hamiltonian in the reduced state of any of the subsystems. Here, we study the dynamics of this quantity under non-local Hamiltonian. Specifically, we address the question: Given an arbitrary non-local Hamiltonian what is the capacity of entanglement that the system can possess? As an useful application, we show that the quantum speed limit for creating the entanglement is not only governed by the fluctuation in the non-local Hamiltonian, but also depends inversely on the time average of square root of the capacity of entanglement. Furthermore, we discuss this quantity for a general self-inverse Hamiltonian and provide a bound on the rate of the capacity of entanglement. Towards the end, we generalise the capacity of entanglement for bipartite mixed states based on the relative entropy of entanglement and show that the above definition reduces to the capacity of entanglement for pure bipartite states. Our results can have several applications in diverse areas of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源