论文标题
为SVM分类器生成量子特征图
Generating quantum feature maps for SVM classifier
论文作者
论文摘要
我们介绍并比较了为量子增强支持向量机生成量子特征图的两种方法,量子增强载体机器是基于内核方法的分类器,我们可以有效地访问高维Hilbert空间。第一种方法是使用惩罚方法具有多目标健身函数的遗传算法,它结合了分类的准确性并最大程度地降低量子特征图电路的门成本。第二种方法使用变异量子电路,重点是如何基于单位基质分解来创建ANSATZ。给出了数值结果和比较,以证明健身量如何降低门成本,同时保持高精度并通过单一矩阵进行电路,从而获得了更好的性能。特别是,我们提出了一些关于降低和优化电路的门成本的想法,同时保持完美的准确性。
We present and compare two methods of generating quantum feature maps for quantum-enhanced support vector machine, a classifier based on kernel method, by which we can access high dimensional Hilbert space efficiently. The first method is a genetic algorithm with multi-objective fitness function using penalty method, which incorporates maximizing the accuracy of classification and minimizing the gate cost of quantum feature map circuit. The second method uses variational quantum circuit, focusing on how to contruct the ansatz based on unitary matrix decomposition. Numerical results and comparisons are presented to demonstrate how the fitness fuction reduces gate cost while remaining high accuracy and conducting circuit through unitary matrix obtains even better performance. In particular, we propose some thoughts on reducing and optimizing the gate cost of a circuit while remaining perfect accuracy.