论文标题

buythedips:改进拓扑的pathloss,基于深度学习的图像细分

BuyTheDips: PathLoss for improved topology-preserving deep learning-based image segmentation

论文作者

Ngoc, Minh On Vu, Chen, Yizi, Boutry, Nicolas, Fabrizio, Jonathan, Mallet, Clement

论文摘要

捕获图像的全局拓扑对于提出对其域的准确分割至关重要。但是,大多数现有的分割方法都不能保留给定输入的初始拓扑,这对许多下游基于对象的任务有害。对于大多数在本地尺度上工作的深度学习模型来说,这是更真实的。在本文中,我们提出了一种新的拓扑深度图像分割方法,该方法依赖于新的泄漏损失:Pathloss。我们的方法是Baloss [1]的扩展,其中我们希望改进泄漏检测,以更好地恢复图像分割的亲密性。这种损失使我们能够正确定位并修复可能发生预测中可能发生的关键点(边界中的泄漏),并基于最短的路径搜索算法。这样,损失最小化仅在必要时才能强制连接,最后提供了对象中对象边界的良好定位。此外,根据我们的研究,与无需使用拓扑损失的方法相比,我们的Pathloss学会了保持更强的细长结构。通过我们的拓扑损失函数培训,我们的方法在两个不同自然的代表性数据集上优于最先进的拓扑感知方法:电子显微镜和历史图。

Capturing the global topology of an image is essential for proposing an accurate segmentation of its domain. However, most of existing segmentation methods do not preserve the initial topology of the given input, which is detrimental for numerous downstream object-based tasks. This is all the more true for deep learning models which most work at local scales. In this paper, we propose a new topology-preserving deep image segmentation method which relies on a new leakage loss: the Pathloss. Our method is an extension of the BALoss [1], in which we want to improve the leakage detection for better recovering the closeness property of the image segmentation. This loss allows us to correctly localize and fix the critical points (a leakage in the boundaries) that could occur in the predictions, and is based on a shortest-path search algorithm. This way, loss minimization enforces connectivity only where it is necessary and finally provides a good localization of the boundaries of the objects in the image. Moreover, according to our research, our Pathloss learns to preserve stronger elongated structure compared to methods without using topology-preserving loss. Training with our topological loss function, our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures: Electron Microscopy and Historical Map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源