论文标题
关于Pillai的问题,涉及两个线性复发序列:Padovan和fibonacci
On Pillai's problem involving two linear recurrent sequences : Padovan and Fibonacci
论文作者
论文摘要
在本文中,我们发现所有整数$ c $具有至少两个表示形式,作为线性复发序列之间的差异。这个问题是涉及Padovan和fibonacci序列的Pillai问题。我们的主要定理的证明使用对数中线性形式的下限,持续分数的属性以及在二磷酸近似中的Baker-Davenport减少方法的版本。
In this paper, we find all integers $c$ having at least two representations as a difference between linear recurrent sequences. This problem is a pillai problem involving Padovan and Fibonacci sequence. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.