论文标题

路径积分基态蒙特卡洛算法,用于纠缠晶格玻色子

A Path Integral Ground State Monte Carlo Algorithm for Entanglement of Lattice Bosons

论文作者

Casiano-Diaz, Emanuel, Herdman, C. M., Del Maestro, Adrian

论文摘要

引入了基态路径积分量蒙特卡洛算法,该算法允许在零温度下研究晶格玻色子的纠缠。在空间子区域之间的rényi纠缠熵之间探索了一维玻色 - 哈伯德模型的相图,该模型由最多$ l = 256 $的位点组成,而在单位填充处,而没有任何对现场占用的限制,远远超出了精确对角线的范围。通过进一步测量了大型系统大小的二维超级氟化物临界点的rényi纠缠熵,证明了该算法的有利缩放率,证实了地面状态中预期的纠缠边界法的存在。扩展了Rényi估计器以测量对称性分辨的纠缠,该纠缠在操作上可以作为具有固定总颗粒数的实验相关晶格气体的资源。

A ground state path integral quantum Monte Carlo algorithm is introduced that allows for the study of entanglement in lattice bosons at zero temperature. The Rényi entanglement entropy between spatial subregions is explored across the phase diagram of the one dimensional Bose-Hubbard model for systems consisting of up to $L=256$ sites at unit-filling without any restrictions on site occupancy, far beyond the reach of exact diagonalization. The favorable scaling of the algorithm is demonstrated through a further measurement of the Rényi entanglement entropy at the two dimensional superfluid-insulator critical point for large system sizes, confirming the existence of the expected entanglement boundary law in the ground state. The Rényi estimator is extended to measure the symmetry resolved entanglement that is operationally accessible as a resource for experimentally relevant lattice gases with fixed total particle number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源