论文标题
Metavalent PBS Moire超级晶格中的强结构和电子耦合
Strong structural and electronic coupling in metavalent PbS moire superlattices
论文作者
论文摘要
Moire超晶格是扭曲的双层材料,其中可调层量子量禁令可访问新的物理和新型设备功能。以前,Moire超级晶格是仅使用具有弱范德华相互作用的材料建造的,并合成具有强层间化学键合的Moire超级晶格被认为是不切实际的。在这里,以硫化铅(PBS)为例,我们报告了一种通过强化学键合成Moire超级晶格的策略。我们使用水溶性配体作为可移动的模板,以获取独立的超薄PBS纳米片,并将它们组装成具有各种扭曲角度的直接接触双层。原子分辨率成像显示了由于强大的元耦合,在超晶格界面处的Moire周期性结构重建。电子能量损失光谱和理论计算共同揭示了扭曲角度26依赖性电子结构,尤其是在小扭曲角以较小的扭曲角度的紧急分离。平面频段的局部状态与良好的量子点相似,有望在设备中应用。这项研究为Moire Superthtices内部探索范德瓦尔斯互惠的替代方案探索了深度能量调制的新大门。
Moire superlattices are twisted bilayer materials, in which the tunable interlayer quantum confinement offers access to new physics and novel device functionalities. Previously, moire superlattices were built exclusively using materials with weak van der Waals interactions and synthesizing moire superlattices with strong interlayer chemical bonding was considered to be impractical. Here using lead sulfide (PbS) as an example, we report a strategy for synthesizing of moire superlattices coupled by strong chemical bonding. We use water-soluble ligands as a removable template to obtain free-standing ultra-thin PbS nanosheets and assemble them into direct-contact bilayers with various twist angles. Atomic-resolution imaging shows the moire periodic structural reconstruction at superlattice interface, due to the strong metavalent coupling. Electron energy loss spectroscopy and theoretical calculations collectively reveal the twist angle26 dependent electronic structure, especially the emergent separation of flat bands at small twist angles. The localized states of flat bands are similar to well-arranged quantum dots, promising an application in devices. This study opens a new door to the exploration of deep energy modulations within moire superlattices alternative to van der Waals twistronics.