论文标题

共同信息,信息理论阈值和在正温度下的冷凝现象

Mutual Information, Information-Theoretic Thresholds and the Condensation Phenomenon at Positive Temperature

论文作者

Panagiotou, Konstantinos, Pasch, Matija

论文摘要

有许多有关通过嘈杂通道的通信的可靠性,随机块模型中社区结构的恢复,自旋玻璃中自由熵的限制行为以及约束满意度问题的解决方案空间结构的限制行为。乍一看,这些主题在几个学科中都可能无关。但是,仔细观察,结构相似性可以很容易地识别出来。 因子图利用这些相似性以统一的方式对上述对象和概念进行建模。在这项贡献中,我们讨论了几量数量的渐近平均情况行为,在某些假设下,平均值以正权重的稀疏Erdős-rényi类型(超级)图进行。首先,我们建立了共同信息的限制,该信息用于编码理论来衡量通信的可靠性。我们还确定了相对熵的极限,可用于在随机块模型中确定是否可能进行弱恢复。此外,我们证明了在种植的合奏上的淬火自由熵的猜想极限,我们用来获得前面的限制。最后,我们在限制的相对熵方面描述了淬灭的自由熵(在空模型上)的渐近行为。

There is a vast body of recent literature on the reliability of communication through noisy channels, the recovery of community structures in the stochastic block model, the limiting behavior of the free entropy in spin glasses and the solution space structure of constraint satisfaction problems. At first glance, these topics ranging across several disciplines might seem unrelated. However, taking a closer look, structural similarities can be easily identified. Factor graphs exploit these similarities to model the aforementioned objects and concepts in a unified manner. In this contribution we discuss the asymptotic average case behavior of several quantities, where the average is taken over sparse Erdős-Rényi type (hyper-) graphs with positive weights, under certain assumptions. For one, we establish the limit of the mutual information, which is used in coding theory to measure the reliability of communication. We also determine the limit of the relative entropy, which can be used to decide if weak recovery is possible in the stochastic block model. Further, we prove the conjectured limit of the quenched free entropy over the planted ensemble, which we use to obtain the preceding limits. Finally, we describe the asymptotic behavior of the quenched free entropy (over the null model) in terms of the limiting relative entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源