论文标题

具有隐式边缘的变压器用于基于粒子的物理模拟

Transformer with Implicit Edges for Particle-based Physics Simulation

论文作者

Shao, Yidi, Loy, Chen Change, Dai, Bo

论文摘要

基于粒子的系统提供了一种灵活而统一的方法,以模拟具有复杂动力学的物理系统。大多数现有的基于粒子系统的数据驱动的模拟器采用图形神经网络(GNN)作为网络骨架,因为粒子及其相互作用可以由图节点和图形边缘自然表示。但是,虽然基于粒子的系统通常包含数百千个颗粒,但由于粒子相互作用的数量增加,粒子相互作用的显式建模不可避免地会导致大量的计算开销。因此,在本文中,我们提出了一种基于变压器的新型方法,被称为具有隐式边缘(TIE)的变压器,以无边缘方式捕获粒子相互作用的丰富语义。领带的核心思想是将涉及涉及配对粒子相互作用的计算分散到每个颗粒更新中。这是通过调整自我发挥的模块以类似于GNN中图表的更新公式来实现的。为了提高领带的概括能力,我们进一步修改了可学习的特定材料的抽象粒子,以将全球材料语义与本地粒子语义解散。我们评估了不同复杂性和材料不同领域的模型。与现有的基于GNN的方法相比,没有铃铛和哨子,TIE可以在所有这些领域中实现卓越的性能和概括。代码和模型可在https://github.com/ftbabi/tie_eccv2022.git上找到。

Particle-based systems provide a flexible and unified way to simulate physics systems with complex dynamics. Most existing data-driven simulators for particle-based systems adopt graph neural networks (GNNs) as their network backbones, as particles and their interactions can be naturally represented by graph nodes and graph edges. However, while particle-based systems usually contain hundreds even thousands of particles, the explicit modeling of particle interactions as graph edges inevitably leads to a significant computational overhead, due to the increased number of particle interactions. Consequently, in this paper we propose a novel Transformer-based method, dubbed as Transformer with Implicit Edges (TIE), to capture the rich semantics of particle interactions in an edge-free manner. The core idea of TIE is to decentralize the computation involving pair-wise particle interactions into per-particle updates. This is achieved by adjusting the self-attention module to resemble the update formula of graph edges in GNN. To improve the generalization ability of TIE, we further amend TIE with learnable material-specific abstract particles to disentangle global material-wise semantics from local particle-wise semantics. We evaluate our model on diverse domains of varying complexity and materials. Compared with existing GNN-based methods, without bells and whistles, TIE achieves superior performance and generalization across all these domains. Codes and models are available at https://github.com/ftbabi/TIE_ECCV2022.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源