论文标题

通过跨模式随机网络预测,不确定性感知的多模式学习

Uncertainty-aware Multi-modal Learning via Cross-modal Random Network Prediction

论文作者

Wang, Hu, Zhang, Jianpeng, Chen, Yuanhong, Ma, Congbo, Avery, Jodie, Hull, Louise, Carneiro, Gustavo

论文摘要

多模式学习通过在预测过程中同样组合多个输入数据模式来关注培训模型。但是,这种相等的组合可能不利于预测准确性,因为不同的方式通常伴随着不同水平的不确定性。通过几种方法研究了使用这种不确定性来组合模式,但是成功有限,因为这些方法旨在处理特定的分类或细分问题,并且不能轻易将其转化为其他任务,或者遭受数值不稳定的困扰。在本文中,我们提出了一种新的不确定性多模式学习者,该学习者通过通过跨模式随机网络预测(CRNP)测量特征密度来估算不确定性。 CRNP旨在几乎不需要适应以在不同的预测任务之间转换,同时进行稳定的培训过程。从技术角度来看,CRNP是探索随机网络预测以估算不确定性并结合多模式数据的第一种方法。对两个3D多模式医学图像分割任务和三个2D多模式计算机视觉分类任务的实验显示了CRNP的有效性,适应性和鲁棒性。此外,我们提供了有关不同融合功能和可视化的广泛讨论,以验证提出的模型。

Multi-modal learning focuses on training models by equally combining multiple input data modalities during the prediction process. However, this equal combination can be detrimental to the prediction accuracy because different modalities are usually accompanied by varying levels of uncertainty. Using such uncertainty to combine modalities has been studied by a couple of approaches, but with limited success because these approaches are either designed to deal with specific classification or segmentation problems and cannot be easily translated into other tasks, or suffer from numerical instabilities. In this paper, we propose a new Uncertainty-aware Multi-modal Learner that estimates uncertainty by measuring feature density via Cross-modal Random Network Prediction (CRNP). CRNP is designed to require little adaptation to translate between different prediction tasks, while having a stable training process. From a technical point of view, CRNP is the first approach to explore random network prediction to estimate uncertainty and to combine multi-modal data. Experiments on two 3D multi-modal medical image segmentation tasks and three 2D multi-modal computer vision classification tasks show the effectiveness, adaptability and robustness of CRNP. Also, we provide an extensive discussion on different fusion functions and visualization to validate the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源