论文标题
代数的稳定等效的新不变
New invariants of stable equivalences of algebras
论文作者
论文摘要
我们表明,稳定等价上的Auslander-Reiten猜想在任意字段上的主要中心矩阵代数以及在代数封闭的字段上的frobenius-finite代数是如此$ ϕ $ -Dimensions和$ψ$ -Dimensions是没有节点的Artin代数稳定等效的不变性。
We show that the Auslander-Reiten conjecture on stable equivalences holds true for principal centralizer matrix algebras over an arbitrary field and for Frobenius-finite algebras over an algebraically closed field, that stable equivalences of algebras with positive $ν$-dominant dimensions preserve stable equivalences of their Frobenius parts, and that the delooping levels, $ϕ$-dimensions and $ψ$-dimensions are invariants of stable equivalences of Artin algebras without nodes.