论文标题

PowerFDNET:基于深度学习的隐形虚假数据注入攻击检测检测AC模型传输系统

PowerFDNet: Deep Learning-Based Stealthy False Data Injection Attack Detection for AC-model Transmission Systems

论文作者

Yin, Xuefei, Zhu, Yanming, Xie, Yi, Hu, Jiankun

论文摘要

最近的研究表明,智能网格容易受到隐形的虚假数据注射攻击(SFDIAS),因为SFDIAS可以绕过基于残留的基于剩余的不良数据检测机制。 SFDIA检测已成为智能电网研究的重点之一。基于深度学习技术的方法表明,在检测SFDIAS方面的准确性有望。但是,大多数现有方法依赖于一系列测量的时间结构,但不考虑总线和传输线之间的空间结构。为了解决这个问题,我们提出了一个时空深网Powerfdnet,以在AC模型电网中进行SFDIA检测。 PowerFDNET由两个子构造组成:空间架构(SA)和时间架构(TA)。 SA的目的是根据其表示形式提取总线/线测量值的表示并对空间结构进行建模。 TA的目的是建模一系列测量序列的时间结构。因此,提出的PowerFDNET可以有效地对测量的时空结构进行建模。关于基准智能电网检测SFDIA的案例研究表明,与最先进的SFDIA检测方法相比,PowerFDNET取得了显着改善。此外,实施并测试了一个面向IOT的轻巧原型,并测试了移动设备,该原型展示了移动设备上的潜在应用。训练有素的模型将在\ textit {https://github.com/hubyz/powerfdnet}上获得。

Recent studies have demonstrated that smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. The SFDIA detection has become one of the focuses of smart grid research. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at \textit{https://github.com/HubYZ/PowerFDNet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源