论文标题

一种基于机器学习的方法,可与国际Lofar望远镜识别引力镜头识别

A machine learning based approach to gravitational lens identification with the International LOFAR Telescope

论文作者

Rezaei, S., McKean, J. P., Biehl, M., de Roo1, W., Lafontaine, A.

论文摘要

我们提出了一种基于机器学习的新方法,用于从干涉数据中检测出星系尺度的引力透镜,特别是使用国际Lofar望远镜(ILT)采取的方法,该镜头以150 MHz的频率观察到北部无线电天空,350 MAS的角度分辨率,350 MAS的角度分辨率和90 UJY Beam-1的敏感性(1 Sigma)。我们开发和测试了几个卷积神经网络,以确定给定样品被归类为镜头或非镜头事件的概率和不确定性。通过对包括逼真的镜头和非镜头无线电源的模拟干涉成像数据集进行训练和测试,我们发现可以回收95.3%的镜头样品(真正的正速率),而从非镜头样品(虚假的正速率)中仅污染了0.008%。将预期的镜头概率考虑到了92.2%的镜头事件的预测样品纯度。我们发现,当镜头图像之间的最大图像分离大于合成束尺寸的3倍时,网络结构是最健壮的,并且镜头图像具有至少20 Sigma(点源)检测的总磁通密度。对于ILT,这对应于爱因斯坦半径大于0.5 ARCSEC和一个无线电源种群的镜头样品,其量度超过2 MJY。通过应用这些标准和我们的镜头检测算法,我们希望发现Lofar两米天空调查中包含的绝大多数Galaxy尺度重力透镜系统。

We present a novel machine learning based approach for detecting galaxy-scale gravitational lenses from interferometric data, specifically those taken with the International LOFAR Telescope (ILT), which is observing the northern radio sky at a frequency of 150 MHz, an angular resolution of 350 mas and a sensitivity of 90 uJy beam-1 (1 sigma). We develop and test several Convolutional Neural Networks to determine the probability and uncertainty of a given sample being classified as a lensed or non-lensed event. By training and testing on a simulated interferometric imaging data set that includes realistic lensed and non-lensed radio sources, we find that it is possible to recover 95.3 per cent of the lensed samples (true positive rate), with a contamination of just 0.008 per cent from non-lensed samples (false positive rate). Taking the expected lensing probability into account results in a predicted sample purity for lensed events of 92.2 per cent. We find that the network structure is most robust when the maximum image separation between the lensed images is greater than 3 times the synthesized beam size, and the lensed images have a total flux density that is equivalent to at least a 20 sigma (point-source) detection. For the ILT, this corresponds to a lens sample with Einstein radii greater than 0.5 arcsec and a radio source population with 150 MHz flux densities more than 2 mJy. By applying these criteria and our lens detection algorithm we expect to discover the vast majority of galaxy-scale gravitational lens systems contained within the LOFAR Two Metre Sky Survey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源