论文标题

小波转换和自我监督的基于学习的框架,用于轴承故障诊断有限的标记数据

A Wavelet Transform and self-supervised learning-based framework for bearing fault diagnosis with limited labeled data

论文作者

Jin, Yuhong, Hou, Lei, Du, Ming, Chen, Yushu

论文摘要

传统的监督轴承故障诊断方法依赖于大量标记的数据,但注释可能非常耗时或不可行。利用有限标记数据的故障诊断方法越来越流行。在本文中,提出了一个小波变换(WT)和自我监督的基于学习的轴承故障诊断框架,以解决缺乏监督样本问题。采用WT和立方样条插值技术,将原始测量的振动信号转换为具有固定比例为输入的时频图(TFM)。视觉变压器(VIT)被用作特征提取的编码器,并且在提议的自我监督学习框架中引入了没有标签(Dino)算法的自我介绍,并具有有限的标记数据和足够的未标记数据。两个滚动轴承故障数据集用于验证。如果两个数据集仅包含1%标记的样品,则利用训练有素的编码器提取的特征向量而不进行微调,则可以根据简单的K-Nearest邻居(KNN)分类器获得超过90 \%的平均诊断精度。此外,与其他自我监管的断层诊断方法相比,所提出的方法的优越性得到了证明。

Traditional supervised bearing fault diagnosis methods rely on massive labelled data, yet annotations may be very time-consuming or infeasible. The fault diagnosis approach that utilizes limited labelled data is becoming increasingly popular. In this paper, a Wavelet Transform (WT) and self-supervised learning-based bearing fault diagnosis framework is proposed to address the lack of supervised samples issue. Adopting the WT and cubic spline interpolation technique, original measured vibration signals are converted to the time-frequency maps (TFMs) with a fixed scale as inputs. The Vision Transformer (ViT) is employed as the encoder for feature extraction, and the self-distillation with no labels (DINO) algorithm is introduced in the proposed framework for self-supervised learning with limited labelled data and sufficient unlabeled data. Two rolling bearing fault datasets are used for validations. In the case of both datasets only containing 1% labelled samples, utilizing the feature vectors extracted by the trained encoder without fine-tuning, over 90\% average diagnosis accuracy can be obtained based on the simple K-Nearest Neighbor (KNN) classifier. Furthermore, the superiority of the proposed method is demonstrated in comparison with other self-supervised fault diagnosis methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源