论文标题
Husimi,Wigner,t {Ö} Plitz,量子统计和反典型转换
Husimi, Wigner, T{ö}plitz, quantum statistics and anticanonical transformations
论文作者
论文摘要
我们研究Husimi,Wigner和T {Ö} Plitz量子密度矩阵的符号时,当对其进行量子统计时,即在交换其积分内核的两个变量之一中的两个坐标上。我们表明,这些动作中的每一个都是在基础经典相位空间的cotangent束上的规范变换。等效地可以将复杂的规范变换与相位的络合率联系起来。在[p]中引入的oftiagonal t {Ö} plitz表示中,所考虑的动作与复杂的雄辩关系有关。
We study the behaviour of Husimi, Wigner and T{ö}plitz symbols of quantum density matrices when quantum statistics are tested on them, that is when on exchange two coordinates in one of the two variables of their integral kernel. We show that to each of these actions is associated a canonical transform on the cotangent bundle of the underlying classical phase space. Equivalently can one associate a complex canonical transform on the complexification of the phase-space. In the off-diagonal T{ö}plitz representation introduced in [P], the action considered is associated to a complex aanticanonical relation.