论文标题

不要忘记我:通过建模本地全球上下文进行删除文本的准确背景恢复

Don't Forget Me: Accurate Background Recovery for Text Removal via Modeling Local-Global Context

论文作者

Liu, Chongyu, Jin, Lianwen, Liu, Yuliang, Luo, Canjie, Chen, Bangdong, Guo, Fengjun, Ding, Kai

论文摘要

由于其在隐私保护,文档修复和文本编辑方面的各种应用,因此删除文本引起了越来越多的关注。它显示出深层神经网络的重大进展。但是,大多数现有方法通常会对复杂背景产生不一致的结果。为了解决这个问题,我们提出了一个上下文引导的文本删除网络,称为CTRNET。 Ctrnet探索了低级结构和高级判别上下文特征,作为指导背景恢复过程的先验知识。我们进一步提出了具有CNNS和Transformer-编码器的局部全球含量建模(LGCM)块,以捕获局部特征并在全球像素之间建立长期关系。最后,我们将LGCM与特征建模和解码的上下文指南合并。在基准数据集,Scut-Enstext和Scut-Syn上进行的实验表明,CTRNET明显胜过现有的最新方法。此外,关于考试论文的定性实验也证明了我们方法的概括能力。代码和补充材料可在https://github.com/lcy0604/ctrnet上找到。

Text removal has attracted increasingly attention due to its various applications on privacy protection, document restoration, and text editing. It has shown significant progress with deep neural network. However, most of the existing methods often generate inconsistent results for complex background. To address this issue, we propose a Contextual-guided Text Removal Network, termed as CTRNet. CTRNet explores both low-level structure and high-level discriminative context feature as prior knowledge to guide the process of background restoration. We further propose a Local-global Content Modeling (LGCM) block with CNNs and Transformer-Encoder to capture local features and establish the long-term relationship among pixels globally. Finally, we incorporate LGCM with context guidance for feature modeling and decoding. Experiments on benchmark datasets, SCUT-EnsText and SCUT-Syn show that CTRNet significantly outperforms the existing state-of-the-art methods. Furthermore, a qualitative experiment on examination papers also demonstrates the generalization ability of our method. The codes and supplement materials are available at https://github.com/lcy0604/CTRNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源