论文标题
HYDRA:混合服务器电源模型
Hydra: Hybrid Server Power Model
论文作者
论文摘要
随着需要大量数据和计算的大数据工作负载的日益增长的复杂性,数据中心每天都会消耗大量功率。为了最大程度地减少数据中心的功耗,几项研究开发了功率模型,可用于调整工作,以减少主动服务器的数量或在其峰值能效点上平衡服务器的工作量。由于软件和硬件异质性的增加,我们观察到,没有单个功率模型可适用于所有服务器条件。一些复杂的机器学习模型本身会产生性能和电源开销,因此不希望经常使用它们。没有电源模型可以考虑容器化的工作负载执行。在本文中,我们提出了一种混合服务器电源模型Hydra,该模型考虑了预测准确性和性能开销。 Hydra动态选择给定服务器条件的最佳功率模型。与最先进的解决方案相比,Hydra在异质服务器上的所有计算强度水平上的表现都优于所有计算机。
With the growing complexity of big data workloads that require abundant data and computation, data centers consume a tremendous amount of power daily. In an effort to minimize data center power consumption, several studies developed power models that can be used for job scheduling either reducing the number of active servers or balancing workloads across servers at their peak energy efficiency points. Due to increasing software and hardware heterogeneity, we observed that there is no single power model that works the best for all server conditions. Some complicated machine learning models themselves incur performance and power overheads and hence it is not desirable to use them frequently. There are no power models that consider containerized workload execution. In this paper, we propose a hybrid server power model, Hydra, that considers both prediction accuracy and performance overhead. Hydra dynamically chooses the best power model for the given server conditions. Compared with state-of-the-art solutions, Hydra outperforms across all compute-intensity levels on heterogeneous servers.